Cyclic Sieving Phenomenon

David Rhee

University of Waterloo

February 10, 2011

David Rhee Cyclic Sieving Phenomenon

イロト 不得 とくほと くほとう

E 990

- 2 Canonical Example
- Other Examples

<ロト <回 > < 注 > < 注 > 、

æ

Introduction	Definition of CSP
Canonical Example	
Other Examples	q-analogs

• X =finite set

David Rhee Cyclic Sieving Phenomenon

Introduction	Definition of CSP
Canonical Example	
Other Examples	q-analogs

- X = finite set
- $C = \{1, c, c^2, \cdots, c^{n-1}\}$, a finite cyclic group acting on X

Introduction	Definition of CSP
Canonical Example	
Other Examples	q-analogs

- X = finite set
- $C = \{1, c, c^2, \cdots, c^{n-1}\}$, a finite cyclic group acting on X
- $\zeta = e^{\frac{2\pi i}{n}} \in \mathbb{C}$, the root of unity of order *n*

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Introduction	Definition of CSP
Canonical Example	
Other Examples	q-analogs

- X = finite set
- $C = \{1, c, c^2, \cdots, c^{n-1}\},$ a finite cyclic group acting on X
- $\zeta = e^{\frac{2\pi i}{n}} \in \mathbb{C}$, the root of unity of order *n*
- f(q) = a polynomial with rational coefficients

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Introduction	Definition of CSP
Canonical Example	
Other Examples	q-analogs

- X = finite set
- $C = \{1, c, c^2, \cdots, c^{n-1}\}$, a finite cyclic group acting on X
- $\zeta = e^{\frac{2\pi i}{n}} \in \mathbb{C}$, the root of unity of order *n*
- f(q) = a polynomial with rational coefficients

We say that the triple (X, C, f(q)) exhibits the cyclic sieving phenomenon (CSP) if for any nonnegative integer *d*, we have that the fixed point set cardinality $|X^{c^d}|$ is equal to the polynomial evaluation $f(\zeta^d)$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Introduction	Definition of CSP
Canonical Example	Remarks
Other Examples	q-analogs

Remark

f(1) is equal to the number of elements in X.

Introduction	Definition of CSP
Canonical Example	Remarks
Other Examples	q-analogs

Remark

f(1) is equal to the number of elements in X.

Remark

f(q) is unique up to the cyclotomic polynomial $\Phi_n(q)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Introduction	Definition of CSP
Canonical Example	Remarks
Other Examples	q-analogs

Remark

f(1) is equal to the number of elements in X.

Remark

f(q) is unique up to the cyclotomic polynomial $\Phi_n(q)$.

Remark

If $f(q) = \sum_{k=0}^{n-1} a_k q^k$ where a_k is the number of *C*-orbits in *X* with stabilizer order dividing *k*, then (X, C, f(q)) exhibits the CSP.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Introduction	Definition of CSP
Canonical Example	
Other Examples	q-analogs

•
$$[n]_q = 1 + q + q^2 + \dots + q^{n-2}$$

David Rhee Cyclic Sieving Phenomenon

Introduction	Definition of CSP
Canonical Example	
Other Examples	q-analogs

•
$$[n]_q = 1 + q + q^2 + \dots + q^{n-1}$$

•
$$[n]_q! = [1]_q[2]_q \cdots [n]_q$$

Introduction	Definition of CSP
Canonical Example	
Other Examples	q-analogs

•
$$[n]_q = 1 + q + q^2 + \dots + q^{n-1}$$

• $[n]_q = [1]_q [2]_q \dots [n]_q$

•
$$[n]_q! = [1]_q[2]_q \cdots [n]_q$$

•
$$\binom{n}{k}_q = \frac{[n]_q!}{[k]_q! [n-k]_q!}$$

Introduction	Definition of CSP
Canonical Example	
Other Examples	q-analogs

1

Definition

•
$$[n]_q = 1 + q + q^2 + \dots + q^{n-1}$$

•
$$[n]_q! = [1]_q[2]_q \cdots [n]_q$$

•
$$\binom{n}{k}_{q} = \frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}$$

These q-analogs are all polynomials in q and are our ordinary numbers, factorials, and binomial coefficients as q approaches 1.

ヘロン 人間 とくほ とくほ とう

Introduction	Definition of CSP
Canonical Example	
Other Examples	q-analogs

•
$$[n]_q = 1 + q + q^2 + \dots + q^{n-1}$$

•
$$[n]_q! = [1]_q[2]_q \cdots [n]_q$$

•
$$\binom{n}{k}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}$$

These q-analogs are all polynomials in q and are our ordinary numbers, factorials, and binomial coefficients as q approaches 1.

When (X, C, f(q)) exhibits the CSP, *f* turns out to be the q-analog of the number of elements in *X* in many cases.

く 同 と く ヨ と く ヨ と

Let *X* be the set of *k*-multisets of [*n*]. Let *C* be a cyclic subgroup of S_n that is generated by the cycle $c = (1, 2, 3, \dots, n)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let X be the set of k-multisets of [n]. Let C be a cyclic subgroup of S_n that is generated by the cycle $c = (1, 2, 3, \dots, n)$.

Example

If n = 3 and k = 2, then $X = \{11, 22, 33, 12, 13, 23\}$. (1,2,3)23 = 31.

イロト イポト イヨト イヨト

Let *X* be the set of *k*-multisets of [*n*]. Let *C* be a cyclic subgroup of S_n that is generated by the cycle $c = (1, 2, 3, \dots, n)$.

Example

If n = 3 and k = 2, then $X = \{11, 22, 33, 12, 13, 23\}$. (1,2,3)23 = 31.

Define f(q) as $\binom{n+k-1}{k}_q$.

イロト イポト イヨト イヨト 一臣

Let *X* be the set of *k*-multisets of [*n*]. Let *C* be a cyclic subgroup of S_n that is generated by the cycle $c = (1, 2, 3, \dots, n)$.

Example

If n = 3 and k = 2, then $X = \{11, 22, 33, 12, 13, 23\}$. (1,2,3)23 = 31.

Define f(q) as $\binom{n+k-1}{k}_q$.

Theorem

(X, C, f(q)) defined as above exhibits the cyclic sieving phenomenon.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Example

Let n = 3 and k = 2.

ヘロト 人間 とくほとくほとう

Example

Let n = 3 and k = 2.

f(q) is $\binom{3+2-1}{2}_q = 1 + q + 2q^2 + q^3 + q^4$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Example

Let n = 3 and k = 2.

$$f(q)$$
 is $\binom{3+2-1}{2}_q = 1 + q + 2q^2 + q^3 + q^4$.

•
$$|X^{id}| = 6 = f(\zeta^0).$$

ヘロト 人間 とくほとくほとう

Example

Let n = 3 and k = 2.

f(q) is $\binom{3+2-1}{2}_q = 1 + q + 2q^2 + q^3 + q^4$.

•
$$|X^{id}| = 6 = f(\zeta^0).$$

•
$$|X^{(1,2,3)}| = 0 = f(\zeta^1).$$

ヘロト 人間 とくほとく ほとう

E 990

Example

Let n = 3 and k = 2.

f(q) is $\binom{3+2-1}{2}_q = 1 + q + 2q^2 + q^3 + q^4$.

•
$$|X^{id}| = 6 = f(\zeta^0).$$

•
$$|X^{(1,2,3)}| = 0 = f(\zeta^1).$$

•
$$|X^{(1,2,3)^2}| = 0 = f(\zeta^2).$$

ヘロト 人間 とくほとくほとう

E 990

Example of the multisets Representation theory Proof Sketch

Definition

Let *V* be a complex vector space. A group homomorphism $[\cdot] : G \to GL(V)$ is called representation.

イロト 不得 とくほと くほとう

Example of the multisets Representation theory Proof Sketch

Definition

Let *V* be a complex vector space. A group homomorphism $[\cdot] : G \to GL(V)$ is called representation.

When *G* acts on *V*, there is a natural choice of representation: [g]v := gv.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction Example of the multise Canonical Example Other Examples Proof Sketch

Definition

The character of a representation is $\chi : G \to \mathbb{C}$ such that $\chi(g) = tr[g]$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Introduction Example of the multise Canonical Example Other Examples Proof Sketch

Definition

The character of a representation is $\chi : G \to \mathbb{C}$ such that $\chi(g) = tr[g]$.

Example

If $V = \mathbb{C}^3$ and S_3 acts on V by permuting the components, then the matrix form of g = (12) in the standard basis is

$$[g]_B = \left[egin{array}{ccc} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{array}
ight]$$

and $\chi(g)$ is 1.

イロト イポト イヨト イヨト

Introduction	Example of the multisets
Canonical Example	Representation theory
Other Examples	Proof Sketch

Define $\mathbb{C}X := \{c_1x_1 + c_2x_2 + \cdots + c_mx_m | x_i \in X\}$. $g = c^d$ acts on $\mathbb{C}X$. We will evaluate $\chi(g)$ in two different basis.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Define $\mathbb{C}X := \{c_1x_1 + c_2x_2 + \cdots + c_mx_m | x_i \in X\}$. $g = c^d$ acts on $\mathbb{C}X$. We will evaluate $\chi(g)$ in two different basis.

Method 1:

X is a standard basis of $\mathbb{C}X$.

The diagonal entry of $[g]_X$ is 1 if multiset $M \in X$ is fixed by g and 0 otherwise. Therefore, $\chi(g) = tr[g]_X = |X^g|$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Example

If n = 3 and k = 2 as before and $g = c^1 = (1, 2, 3)$, then

$$g(11) = 22, \quad g(22) = 33, \quad g(33) = 11, \ g(12) = 23, \quad g(23) = 31, \quad g(31) = 12.$$

So $[g]_{\{11,22,33,12,23,31\}}$ is equal to

$$\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}$$

Therefore, $\chi(g) = 0 = |X^g|$.

Introduction	Example of the multiset
Canonical Example	Representation theory
Other Examples	Proof Sketch

Method 2:

Let $c = (1, 2, 3, \dots, n) \in S_n$. The characteristic polynomial of c is $x^n - 1$, which has n distinct roots: $1, \zeta, \zeta^2, \dots, \zeta^{n-1}$.

▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Introduction Example of the multiset Canonical Example Other Examples Proof Sketch

Method 2:

Let $c = (1, 2, 3, \dots, n) \in S_n$. The characteristic polynomial of c is $x^n - 1$, which has n distinct roots: $1, \zeta, \zeta^2, \dots, \zeta^{n-1}$.

So there must be a basis $B = \{b_0, b_1, \dots, b_{n-1}\}$ of $\mathbb{C}[n]$ such that the representation of c in $GL(\mathbb{C}[n])$ is diagonalized to diag $(1, \zeta, \dots, \zeta^{n-1})$ by B, i.e. $c(b_i) = \zeta^i b_i$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Introduction Example of the multisel Canonical Example Other Examples Proof Sketch

Method 2:

Let $c = (1, 2, 3, \dots, n) \in S_n$. The characteristic polynomial of c is $x^n - 1$, which has n distinct roots: $1, \zeta, \zeta^2, \dots, \zeta^{n-1}$.

So there must be a basis $B = \{b_0, b_1, \dots, b_{n-1}\}$ of $\mathbb{C}[n]$ such that the representation of c in $GL(\mathbb{C}[n])$ is diagonalized to diag $(1, \zeta, \dots, \zeta^{n-1})$ by B, i.e. $c(b_i) = \zeta^i b_i$.

 $[c^d]_B$ is diag $(1^d, \zeta^d, \cdots, (\zeta^{n-1})^d)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Method 2:

Let $c = (1, 2, 3, \dots, n) \in S_n$. The characteristic polynomial of c is $x^n - 1$, which has n distinct roots: $1, \zeta, \zeta^2, \dots, \zeta^{n-1}$.

So there must be a basis $B = \{b_0, b_1, \dots, b_{n-1}\}$ of $\mathbb{C}[n]$ such that the representation of c in $GL(\mathbb{C}[n])$ is diagonalized to diag $(1, \zeta, \dots, \zeta^{n-1})$ by B, i.e. $c(b_i) = \zeta^i b_i$.

 $[c^d]_B$ is diag $(1^d, \zeta^d, \cdots, (\zeta^{n-1})^d)$.

The set of k-multisets of B is an another basis for $\mathbb{C}X$.

ヘロト 不得 とうき とうとう

э.

Example of the multisets Representation theory Proof Sketch

Example

$$\begin{array}{ll} g(b_0b_0) = (\zeta^0b_0)(\zeta^0b_0), & g(b_1b_1) = (\zeta^1b_1)(\zeta^1b_1), \\ g(b_2b_2) = (\zeta^2b_2)(\zeta^2b_2), & g(b_0b_1) = (\zeta^0b_0)(\zeta^1b_1), \\ g(b_1b_2) = (\zeta^1b_1)(\zeta^2b_2), & g(b_2b_0) = (\zeta^2b_2)(\zeta^0b_0) \end{array}$$

So $[g]_{\{b_0b_0,b_1b_1,b_2b_2,b_0b_1,b_1b_2,b_2b_0\}}$ is equal to

Subsets Catalan CSP

Theorem

Let X be the set of k-subsets of [n], then

$$\left(X,\langle (1,2,\cdots,n)\rangle,\binom{n}{k}_q\right)$$

exhibits cyclic sieving phenomenon.

イロト 不得 とくほ とくほ とう

E 990

Subsets Catalan CSP

Definition

The nth Catalan number, $C_n = \frac{1}{n+1} \binom{2n}{n}$, is the number of expressions containing *n* pairs of balanced brackets.

Example 1 2 3 4 5 6 7 8 () (()) is balanced. 1 2 3 4 5 6 7 8 ()) (()) is balanced. ()) (()) is not.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Subsets Catalan CSP

ヘロト 人間 とくほとくほとう

Subsets Catalan CSP

Rotation by π/n is an action on noncrossing matchings.

Subsets Catalan CSP

Rotation by π/n is an action on noncrossing matchings.

Theorem

Let X be the set of noncrossing matchings and R be the rotation by π/n . Then

$$\left(X, \langle R \rangle, \frac{1}{[2n+1]_q} \binom{2n}{n}_q\right)$$

exhibits cyclic sieving phenomenon.

イロト イポト イヨト イヨト

Subsets Catalan CSP

The number of triangulations of a regular n + 2-gon is also C_n .

Subsets Catalan CSP

The number of triangulations of a regular n + 2-gon is also C_n .

David Rhee Cyclic Sieving Phenomenon

イロト 不得 とくほと くほとう

æ

Subsets Catalan CSP

Theorem

Let X be the set of triangulations of regular n + 2-gon and R be the rotation by $2\pi/(n+2)$. Then

$$\left(X, \langle R \rangle, \frac{1}{[2n+1]_q} \binom{2n}{n}_q\right)$$

exhibits cyclic sieving phenomenon.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●