
Introduction
Canonical Example

Other Examples

Cyclic Sieving Phenomenon

David Rhee

University of Waterloo

February 10, 2011

David Rhee Cyclic Sieving Phenomenon



Introduction
Canonical Example

Other Examples

1 Introduction

2 Canonical Example

3 Other Examples

David Rhee Cyclic Sieving Phenomenon



Introduction
Canonical Example

Other Examples

Definition of CSP
Remarks
q-analogs

Definition
X = finite set

C = {1, c, c2, · · · , cn−1}, a finite cyclic group acting on X

ζ = e
2πi
n ∈ C, the root of unity of order n

f (q) = a polynomial with rational coefficients

We say that the triple (X ,C, f (q)) exhibits the cyclic sieving
phenomenon (CSP) if for any nonnegative integer d , we have
that the fixed point set cardinality |X cd | is equal to the
polynomial evaluation f (ζd ).
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Remark
f (1) is equal to the number of elements in X .

Remark
f (q) is unique up to the cyclotomic polynomial Φn(q).

Remark

If f (q) =
∑n−1

k=0 akqk where ak is the number of C-orbits in X
with stabilizer order dividing k , then (X ,C, f (q)) exhibits the
CSP.
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Definition

[n]q = 1 + q + q2 + · · ·+ qn−1

[n]q! = [1]q[2]q · · · [n]q(n
k

)
q =

[n]q!
[k ]q![n−k ]q!

These q-analogs are all polynomials in q and are our ordinary
numbers, factorials, and binomial coefficients as q approaches
1.
When (X ,C, f (q)) exhibits the CSP, f turns out to be the
q-analog of the number of elements in X in many cases.
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Example of the multisets
Representation theory
Proof Sketch

Let X be the set of k -multisets of [n].
Let C be a cyclic subgroup of Sn that is generated by the cycle
c = (1,2,3, · · · ,n).

Example

If n = 3 and k = 2, then X = {11,22,33,12,13,23}.
(1,2,3)23 = 31.

Define f (q) as
(n+k−1

k

)
q.

Theorem
(X ,C, f (q)) defined as above exhibits the cyclic sieving
phenomenon.
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Example
Let n = 3 and k = 2.

11

22

33

12

23

31

f (q) is
(3+2−1

2

)
q = 1 + q + 2q2 + q3 + q4.

|X id | = 6 = f (ζ0).
|X (1,2,3)| = 0 = f (ζ1).

|X (1,2,3)2 | = 0 = f (ζ2).
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Example of the multisets
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Proof Sketch

Definition
Let V be a complex vector space. A group homomorphism
[·] : G→ GL(V ) is called representation.

When G acts on V , there is a natural choice of representation:
[g]v := gv .
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Proof Sketch

Definition
The character of a representation is χ : G→ C such that
χ(g) = tr[g].

Example

If V = C3 and S3 acts on V by permuting the components, then
the matrix form of g = (12) in the standard basis is

[g]B =

 0 1 0
1 0 0
0 0 1


and χ(g) is 1.
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Example of the multisets
Representation theory
Proof Sketch

Define CX := {c1x1 + c2x2 + · · ·+ cmxm|xi ∈ X}. g = cd acts
on CX .
We will evaluate χ(g) in two different basis.

Method 1:
X is a standard basis of CX .
The diagonal entry of [g]X is 1 if multiset M ∈ X is fixed by g
and 0 otherwise. Therefore, χ(g) = tr[g]X = |X g |.
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Example

If n = 3 and k = 2 as before and g = c1 = (1,2,3), then

g(11) = 22, g(22) = 33, g(33) = 11,
g(12) = 23, g(23) = 31, g(31) = 12.

So [g]{11,22,33,12,23,31} is equal to

0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0


Therefore, χ(g) = 0 = |X g |.

David Rhee Cyclic Sieving Phenomenon



Introduction
Canonical Example

Other Examples

Example of the multisets
Representation theory
Proof Sketch

Method 2:
Let c = (1,2,3, · · · ,n) ∈ Sn. The characteristic polynomial of c
is xn − 1, which has n distinct roots: 1, ζ, ζ2, · · · , ζn−1.

So there must be a basis B = {b0,b1, · · · ,bn−1} of C[n] such
that the representation of c in GL(C[n]) is diagonalized to
diag(1, ζ, · · · , ζn−1) by B, i.e. c(bi) = ζ ibi .

[cd ]B is diag(1d , ζd , · · · , (ζn−1)d ).

The set of k -multisets of B is an another basis for CX .
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Example

g(b0b0) = (ζ0b0)(ζ0b0), g(b1b1) = (ζ1b1)(ζ1b1),
g(b2b2) = (ζ2b2)(ζ2b2), g(b0b1) = (ζ0b0)(ζ1b1),
g(b1b2) = (ζ1b1)(ζ2b2), g(b2b0) = (ζ2b2)(ζ0b0)

So [g]{b0b0,b1b1,b2b2,b0b1,b1b2,b2b0} is equal to

ζ0 · ζ0 0 0 0 0 0
0 ζ1 · ζ1 0 0 0 0
0 0 ζ2 · ζ2 0 0 0
0 0 0 ζ0 · ζ1 0 0
0 0 0 0 ζ1 · ζ2 0
0 0 0 0 0 ζ2 · ζ0


χ(g) = ζ0 · ζ0 + ζ1 · ζ1 + ζ2 · ζ2 + ζ0 · ζ1 + ζ1 · ζ2 + ζ2 · ζ0 =
1 + ζ + 2ζ2 + ζ3 + ζ4.
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Subsets
Catalan CSP

Theorem
Let X be the set of k-subsets of [n], then(

X , 〈(1,2, · · · ,n)〉,
(

n
k

)
q

)
exhibits cyclic sieving phenomenon.
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Definition

The nth Catalan number, Cn = 1
n+1

(2n
n

)
, is the number of

expressions containing n pairs of balanced brackets.

Example

1 2 3 4 5 6 7 8
( ) ( ( ) ( ) )

is balanced.

1 2 3 4 5 6 7 8
( ) ) ( ( ) ) )

is not.
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Example
C3 = 5.

1 2 3 4 5 6
( ( ( ) ) )

1 2 3 4 5 6
( ( ) ( ) )

1 2 3 4 5 6
( ( ) ) ( )

1 2 3 4 5 6
( ) ( ( ) )

1 2 3 4 5 6
( ) ( ) ( )

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6
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Rotation by π/n is an action on noncrossing matchings.

Theorem
Let X be the set of noncrossing matchings and R be the
rotation by π/n. Then(

X , 〈R〉, 1
[2n + 1]q

(
2n
n

)
q

)
exhibits cyclic sieving phenomenon.
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The number of triangulations of a regular n + 2-gon is also Cn.

Example
C3 = 5
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Theorem
Let X be the set of triangulations of regular n + 2-gon and R be
the rotation by 2π/(n + 2). Then(

X , 〈R〉, 1
[2n + 1]q

(
2n
n

)
q

)
exhibits cyclic sieving phenomenon.
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